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Abstract

We propose a new parallel-in-time algorithm for solving optimal control problems con-
strained by partial differential equations. Our approach, which is based on a deeper un-
derstanding of ParaExp, considers an overlapping time-domain decomposition in which
we combine the solution of homogeneous problems using exponential propagation with
the local solutions of inhomogeneous problems. The algorithm yields a linear system
whose matrix-vector product can be fully performed in parallel. We then propose a pre-
conditioner to speed up the convergence of GMRES in the special cases of the heat
and wave equations.

Optimal control problem

Let us consider the following linear-quadratic optimal control problem

min
ν

1

2
∥y(T )− ytg∥2 +

α

2

∫ T

0

∥ν(t)∥2 dt,

s.t. ẏ(t) = Ly(t) + ν(t), y(0) = yin, t ∈ (0, T ), (1)

where α is a regularization parameter, yin the initial condition and ytg the target state.
Introducing the adjoint state λ we obtain the following the optimality system

ẏ = Ly − 1

α
λ, λ̇ = −LTλ, (2)

with initial and final condition yin = y(0) and λ(T ) = y(T )− ytg respectively. We solve this
system using a parallel in time idea based ParaExp algorithm presented bellow.

Time Parallel Algorithm

For L ∈ N∗, we consider the non-overlapping sub-intervals (Tℓ−1, Tℓ) , ℓ = 1, . . . , L of
(0, T ) with Tℓ = ℓ∆T and ∆T = T/L. We define Yℓ ≈ y(Tℓ) and Λℓ ≈ λ(Tℓ). We
now consider the decomposition of the couple of the ODEs (2) into homogeneous and
inhomogeneous parts over sub-intervals.
Homegeneous sub-problems on λ : Backward exponential propagation

λ̇ℓ(t) = −LTλℓ(t), λℓ(TL) = ΛL, on (Tℓ−1, TL), ℓ = 1, . . . , L. (3)

Inhomegeneous sub-problems on y : Forward integration

ẇℓ(t) = Lwℓ(t)−
1

α
λℓ(t), wℓ(Tℓ−1) = 0, on (Tℓ−1, Tℓ), ℓ = 1, . . . , L (4)

Homogeneous sub-problems on y : Forward exponential propagation:
u̇1(t) =Lu1(t), u1(T0) = yin, on (T0, TL)

u̇ℓ(t) =Luℓ(t), uℓ(Tℓ) = wℓ−1(Tℓ−1), on (Tℓ−1, TL), ℓ = 2, . . . , L
(5)

Optimal trajectory : By superposition principle ,

Yℓ = wℓ(Tℓ) +

ℓ∑
j=1

uj(Tℓ) on (Tℓ−1, Tℓ), ℓ = 1, . . . , L. (6)
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Let Qℓ and Pℓ be exponential propagators that solve the homogeneous sub-problems
(3) and (5) on (Tℓ−1, TL) respectively and Rℓ the solver of the inhomoegeneous sub-
problems (4) on (Tℓ−1, Tℓ). Then

Yℓ = P1(Tℓ) · yin −
1

α
Rℓ(Tℓ) · ΛL −

1

α

ℓ∑
j=2

Pj(Tℓ) · Rj−1(Tj−1) · ΛL, ℓ = 1, . . . , L,

and Λℓ = Qℓ(Tℓ) · ΛL, ℓ = 1, . . . , L − 1. Using the final condition ΛL = YL − ytg, we find
that ΛL satisfies

M · ΛL + b = 0, (7)
where b := ytg − P1(TL) · yin and

M := I +
1

α
RL(TL) +

1

α

L∑
j=2

Pj(TL) · Rj−1(Tj−1), I : identity matrix.

One can use GMRES to solve (7). Since the matrix M is generally ill-conditioned,
an appropriate preconditioner is needed, which we construct for the heat and wave
equations.

Preconditioner : Heat equation case

We consider the optimal control problem involving the following heat equation

ẏ = ∆y + ν on (0, 1)× (0, T ), y(x, 0) = yin(x), y(0, t) = y(1, t) = 0, T ≥ 1. (8)

Finite difference discretization in space : ẏ(t) = Ly(t)+ν(t), y(0) = yin where
y(t), y0, ν(t) ∈ Rr, r the number of points in space.

Preconditioner : P−1 = L(L − 1
2αI)

−1 for solving (7) derived from a spectral
analysis of the continuous form of M since L is symmetric.

Application of P−1 : each application of P−1 involves only one solution of the
elliptic problem (L − 1

2αI)v = f.
Therefore, if an algebraic method is used for computing Qℓ and Pℓ then we have
the following result.
Theorem 1 Let N be given and Rℓ be approximated using implicit Euler with N
fine sub-intervals over each (Tℓ−1, Tℓ). Then any eigenvalue µ of MP−1 satisfies

1 < µ < 1 +
δt

α
, δt = T/LN.

The preconditioner P−1 is more efficient for a high-order approximation of Rℓ

than for a lower order one. We solve (7) in GMRES for N = 1000, r = 100 and
α = 10−6. We use for this instance gmres in Matlab with restart=[], tol=1e-
8 and maxit=size(M,1). SDIRK is a quadrature formula of stage c = (1/2 +√

(3)/6, 1/2−
√

(3)/6) and weights d = (1/2, 1/2).
Schemes Cond(M) #Iters (M) Cond(MP−1) #Iters (MP−1)

Euler 4.97e2 500 7.76 44

SDIRK 5.13e3 500 1.35 4

Preconditioner : Wave equation case

We now consider the optimal control problem involving the following wave equa-
tion

utt = ∆u + ν on (0, 1)× (0, T ), u(x, 0) = u0(x), ∂tu(x, 0) = 0. (9)

ODE system from (9) : ẏ = Ly + Bν where y =
[
u
ut

]
, L =

[
0 I
∆ 0

]
, B =

[
0
I

]
.

Discretization of ∆ : We use finite difference with Dirichlet boundary condition.
Continuous form of M : Since L is no longer symmetric the continuous ana-

logue of M takes the form

M := I +
1

α

∫ T

0

exp(sL)BBT exp(sLT ) ds =

[
M11 M12

M21 M22

]
,

where for A = −∆,M11 = I + T
2αA

−1 − 1
4αA

−3/2 sin(2TA1/2),M12 =
1
2αA

−1(I − cos(2TA1/2)) ,M21 = M12 and
M22 = (1 + T

2α)I +
1
4αA

−1/2 sin(2TA1/2).

Preconditioner : P−1 =I −
[
(aI + bA)−1 0

0 cI

]
, a = T, b = 2α and finally c = 1/(2α +

T ). This is derived from the spectral analysis of M based A.
Application : Each application of P−1 therefore involves only one solution of the

elliptic problem (aI + bA)v = f.
We solve (7) in GMRES for N = 1000, r = 100 and α = 10−6. We use for
this instance the function gmres in Matlab with restart=[], tol=1e-8 and
maxit=size(M,1).

Schemes Cond(M) #Iters (M) Cond(MP−1) #Iters (MP−1)
Euler 3.8e4 84 2.59 4

SDIRK 3.8e4 84 2.59 4

Conclusion

We introduced a new time parallel algorithm for time dependent linear quadratic
optimal control problem when a cheap exponential integrator is available. We
proposed two preconditioners to solves efficiently the linear equation that comes
from the algorithm on the particular cases of heat and wave equations respec-
tively. We are now studying the optimal control problem involving the wave typ
equation with boundary control in one and several dimensions including CFL
conditions cases.
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