

A Parallel in Time Algorithm Based on ParaExp for Optimal Control Problems.

Djahou N. Tognon, INRIA Paris & Sorbonne Université (Paris, France)

Joint work with **Félix Kwok**, Université Laval (Québec, Canada)

63rd IEEE Conference on Decision and Control (CDC), 16-19 Dec 2024, Milan, Italy

Outline

Introduction

Parallel in Time Algorithm

Preconditioner Design

1D heat equation case

1D wave equation case

Conclusion and Ongoing works

Introduction: Linear quadratic control problem

We consider the linear quadratic optimal control problem given by

$$\begin{split} \min_{\nu} \mathcal{J}(\nu) := \frac{1}{2} \left\| y(T) - y_{tg} \right\|^2 + \frac{\alpha}{2} \int_{0}^{T} \left\| \nu(t) \right\|^2 dt, \\ \text{subject to} \quad \dot{y}(t) = \mathcal{L} y(t) + \nu(t), \quad y(0) = y_{in}, \quad t \in (0, T]. \end{split}$$

- $y:[0,T]\longrightarrow \mathbb{R}^r$ the state function,
- $\nu: [0, T] \longrightarrow \mathbb{R}^r$ the control,
- y_{in} and y_{tg} the initial and final states,
- $\mathcal{L} \in \mathbb{R}^{r \times r}$ comes from a semi-discretization in space.

Introduction: Linear quadratic control problem

• Using an adjoint variable λ , the Lagrange operator becomes

$$\mathfrak{L}(
u,y,\lambda) = \mathcal{J}(
u) - \int_0^T \left(\dot{y}(t) - \mathcal{L}y(t) -
u(t)
ight)^T \cdot \lambda(t) dt.$$

• Taking $\nabla \mathfrak{L} = 0$, we get the optimality system

$$\begin{cases} \dot{y}(t) - \mathcal{L}y(t) = \nu(t) \\ y(0) = y_{in}, \end{cases} \begin{cases} \dot{\lambda}(t) + \mathcal{L}^{T}\lambda(t) = 0 \\ \lambda(T) = y(T) - y_{tg}, \end{cases}$$
$$\alpha\nu(t) = -\lambda(t).$$

Reduced optimality system

$$\dot{y}(t) = \mathcal{L}y(t) - \frac{1}{\alpha}\lambda(t), \qquad \dot{\lambda}(t) = -\mathcal{L}^{T}\lambda(t),$$
 (Opt-Syst)

with $y(0) = y_{in}$ and $\lambda(T) = y(T) - y_{tg}$.

ParaExp Algorithm [M. Gander and S. Güttel, 2013]

- For a given initial value problem: $\dot{y}(t) = \mathcal{L}y(t) + f(t), \ y(0) = y_0, \ t \in (0, T],$
- We consider L sub-intervals of [0,T] given by $(T_{\ell-1},T_{\ell})$ $\ell=1,\ldots,L$ $T_{\ell}=\ell\Delta T, \ \Delta T=T/L$.

$$T_0$$
 T_1 $T_{\ell+1}$

Sub-problems

Inhomogeneous sub-problems on y: For $\ell = 1, \dots, L$,

$$\dot{w}_{\ell}(t) = \mathcal{L}w_{\ell}(t) + f(t), \quad w_{\ell}(T_{\ell-1}) = 0, \quad t \in (T_{\ell-1}, T_{\ell}],$$

Homogeneous sub-problems: $\dot{u}_1(t) = \mathcal{L}u_1(t), \quad u_1(T_0) = y_0, \ t \in (T_0, T_L] \text{ and for } \ell = 2, \dots, L.$

$$\dot{u}_{\ell}(t) = \mathcal{L}u_{\ell}(t), \quad u_{\ell}(T_{\ell-1}) = w_{\ell-1}(T_{\ell-1}), \quad t \in (T_{\ell-1}, T_L]$$

Superposition principle: For $t \in [T_{\ell-1}, T_{\ell}], \ \ell = 1, \dots, L$,

$$y(t) = w_{\ell}(t) + \sum_{j=1}^{\ell} u_j(t).$$

Parallel in Time Algorithm: ParaExp idea.

• Let $Y_{\ell} \approx y(T_{\ell}), \ \ell = 1, \dots, L,$ $\Lambda_{\ell} \approx \lambda(T_{\ell}), \ \ell = 1, \dots, L-1.$

Sub-problems

Homogeneous sub-problems on λ : For $\ell = 1, \ldots, L-1$,

$$\dot{\lambda}_{\ell}(t) = -\mathcal{L}^{T} \lambda_{\ell}(t), \quad \lambda_{\ell}(T_{L}) = \Lambda_{L}, \ \ t \in \ [T_{\ell-1}, T_{L}),$$
 (H_{λ})

Inhomogeneous sub-problems on y: For $\ell = 1, \ldots, L$,

$$\dot{w}_{\ell}(t) = \mathcal{L}w_{\ell}(t) - \frac{1}{\alpha}\lambda_{\ell}(t), \quad w_{\ell}(T_{\ell-1}) = 0, \quad t \in (T_{\ell-1}, T_{\ell}],$$

Homogeneous sub-problems on y: for $\ell = 2, ..., L$.

$$\dot{u}_1(t) = \mathcal{L}u_1(t), \quad u_1(T_0) = y_{in}, \quad t \in (T_0, T_L],
\dot{u}_{\ell}(t) = \mathcal{L}u_{\ell}(t), \quad u_{\ell}(T_{\ell-1}) = w_{\ell-1}(T_{\ell-1}), \quad t \in (T_{\ell-1}, T_L],$$
(H_y)

Parallel in Time Algorithm: Solution propagators

Optimal trajectory

$$y(\mathcal{T}_\ell) = w_\ell(\mathcal{T}_\ell) + \sum_{j=1}^\ell u_j(\mathcal{T}_\ell), \quad \ell = 1, \ldots, L.$$

Solution operators

• Q_{ℓ} : exponential propagator that solves (H_{λ}) such that

$$\lambda_{\ell}(t) = \mathcal{Q}_{\ell}(t) \cdot \mathsf{\Lambda}_{\mathsf{L}}, \ \ t \in [\mathcal{T}_{\ell-1}, \mathcal{T}_{\mathsf{L}}), \quad \ell = 1, \ldots, L-1,$$

• \mathcal{R}_{ℓ} : solution operator that solves (H_{γ}) such that

$$w_\ell(t) = -rac{1}{lpha}\mathcal{R}_\ell(t)\cdot \mathsf{\Lambda}_\mathsf{L}, \;\; t\in [T_{\ell-1},T_\ell], \quad \ell=1,\ldots,\mathsf{L},$$

• \mathcal{P}_ℓ : exponential propagator that solves $(\frac{H_y}{I})$ such that $u_1(t) = \mathcal{P}_1(t) \cdot y_{in}, \ t \in [T_0, T_L],$ and

$$u_{\ell}(t) = -\frac{1}{\alpha} \mathcal{P}_{\ell}(t) \cdot \mathcal{R}_{\ell-1}(T_{\ell-1}) \cdot \mathsf{\Lambda}_{\mathsf{L}}, \quad t \in [T_{\ell-1}, T_{\mathsf{L}}], \quad \ell = 2, \ldots, \mathsf{L}.$$

Parallel in Time Algorithm: Discrete optimality system

Optimality system

Discrete optimal trajectory:

$$Y_\ell = \mathcal{P}_\ell(\mathcal{T}_\ell) \cdot y_{\mathsf{in}} - rac{1}{lpha} \mathcal{R}_\ell(\mathcal{T}_\ell) \cdot \mathsf{\Lambda}_\mathsf{L} - rac{1}{lpha} \sum_{\ell=2}^\ell \mathcal{P}_j(\mathcal{T}_\ell) \cdot \mathcal{R}_{j-1}(\mathcal{T}_{j-1}) \cdot \mathsf{\Lambda}_\mathsf{L}, \;\; \ell = 1, \dots, \mathsf{L}.$$

• Final condition : $\Lambda_L - Y_L + y_{tg} = 0$.

Linear system on Λ_L

We substitute Y_l into the final condition and obtain :

$$\mathcal{M} \cdot \Lambda_L = b$$
,

$$\text{where} \quad \mathcal{M} := I + \frac{1}{\alpha} \mathcal{R}_L(\mathcal{T}_L) + \frac{1}{\alpha} \sum_{j=2}^L \mathcal{P}_j(\mathcal{T}_L) \cdot \mathcal{R}_{j-1}(\mathcal{T}_{j-1}), \quad b = y_{tg} - \mathcal{P}_1(\mathcal{T}_L) \cdot y_{in}.$$

Parallel in Time Algorithm: Parallel distribution

Parallel computation of $\mathcal{M} \cdot \Lambda_L$

$$\mathcal{M} \cdot \Lambda_L = \Lambda_L + \frac{1}{\alpha} \mathcal{R}_L(T_L) \cdot \Lambda_L + \frac{1}{\alpha} \sum_{i=2}^L \mathcal{P}_j(T_L) \cdot \mathcal{R}_{j-1}(T_{j-1}) \cdot \Lambda_L.$$

$$y_{in} \longrightarrow u_1: \quad \mathcal{P}_1(T_L) \cdot y_{in}, \quad \Lambda_L \longrightarrow \lambda_L \longrightarrow w_L: \quad \mathcal{R}_L(T_L) \cdot \Lambda_L,$$

$$\Lambda_L \longrightarrow \lambda_\ell \longrightarrow w_\ell \longrightarrow u_{\ell+1}: \quad \mathcal{P}_{\ell+1}(T_L) \cdot \mathcal{R}_\ell(T_\ell) \cdot \Lambda_L, \quad \ell = 1, \dots, L-1.$$

Preconditioner: 1D heat equation

• We consider 1D heat equation $\dot{y} = \Delta y + \nu$ on $[0,1] \times (0,T]$ with $y(x,0) = y_{in}(x)$ and Dirichlet boundary condition. A semi-discretization using second-order centered finite difference gives

$$\dot{y}(t) = \mathcal{L}y(t) + \nu(t), \quad y(0) = y_{in}, \ \ t \in (0, T].$$

• From the continuous form of \mathcal{M} given by $I + \frac{1}{\alpha}\mathcal{L}^{-1}\left(e^{2T\mathcal{L}} - I\right)$ we obtain:

Preconditioner

$$\widehat{\mathcal{M}}^{-1} = \mathcal{L} \left(\mathcal{L} - \frac{2}{lpha} I \right)^{-1}.$$

Each application of $\widehat{\mathcal{M}}^{-1}$ only requires a multiplication by \mathcal{L} and the solving of an elliptic problem of the form $(\mathcal{L} - \frac{1}{2\alpha})v = f$, which can be done cheaply using algebraic multigrid.

Theorem

Let N be given and \mathcal{R}_{ℓ} be approximated using implicit Euler with N fine sub-intervals over each $[T_{\ell-1}, T_{\ell}]$. Then any eigenvalue μ of $\mathcal{M}\widehat{\mathcal{M}}^{-1}$ satisfies

$$1 < \mu < 1 + rac{\delta t}{lpha}, \qquad \delta t = T/LN.$$

Numerical results: 1D heat equation

Test data

In our numerical test, we set $T=1, r=100, \alpha=10^{-4}$. SDIRK is the Runge-Kutta method of stages $(1/2+\sqrt(3)/6,1/2-\sqrt(3)/6)$ and weights (1/2,1/2). We set N=1000. We use Euler and SDIRK to approximate \mathcal{R}_ℓ and the function expm in MATLAB to get \mathcal{P}_ℓ and \mathcal{Q}_ℓ . GMRES tol=1e-8.

Efficiency of the preconditioner in GMRES

Unpreconditioned system ${\cal M}$

	$\sigma_{\it max}$	# iters	Res
Euler	4.9e2	500	1.3e-8
SDIRK	4.9e2	500	4.08e-7

Preconditioned system $\mathcal{M}\widehat{\mathcal{M}}^{-1}$

	$\sigma_{\it max}$	# iters	Res
Euler	1.78	9	7.7e-9
SDIRK	1.0	2	9.64e-9

Number of iterations of the preconditioned system remains bounded as $r \longrightarrow \infty$.

	# Iters(Euler)		# Iters(SDIRK)	
	$L = 10^3$	$L=3\times10^3$	$L = 10^3$	$L=3\times10^3$
100	9	6	3	2
200	10	7	3	3
250	11	7	3	3
600	11	7	3	3

Preconditioner: 1D wave equation

• We now consider 1D wave equation given by $\partial_{tt}v = \Delta v + \nu$, on $[0,1] \times (0,T]$, with $v(x,0) = v_0(x), \partial_t v(x,0) = 0, x \in [0,1]$. A semi-discretization in space with second-order centered finite-difference leads

$$\dot{y} = \mathcal{L}y + \mathcal{B}\nu, \quad y = \begin{bmatrix} v \\ \partial_t v \end{bmatrix}, \ \mathcal{L} = \begin{bmatrix} 0 & I \\ \Delta_h & 0 \end{bmatrix} \text{ and } \ \mathcal{B} = \begin{bmatrix} 0 \\ I \end{bmatrix}.$$

lacksquare The continuous form of ${\mathcal M}$ is given by

$$I + rac{1}{lpha} \int_0^T \exp(s\mathcal{L}) \mathcal{B} \mathcal{B}^T \exp(s\mathcal{L}^T) \, ds = egin{bmatrix} M_{11} & M_{12} \ M_{21} & M_{22} \end{bmatrix},$$

where for $A = -\Delta_h$, $M_{21} = M_{12}$, $M_{12} = \frac{1}{2\alpha}A^{-1}(I - \cos(2TA^{1/2}))$

$$M_{11} = I + \frac{T}{2\alpha}A^{-1} - \frac{1}{4\alpha}A^{-3/2}\sin(2TA^{1/2}), \quad M_{22} = (1 + \frac{T}{2\alpha})I + \frac{1}{4\alpha}A^{-1/2}\sin(2TA^{1/2}).$$

Preconditioner

$$\widehat{\mathcal{M}}^{-1} = I - \begin{bmatrix} (aI + bA)^{-1} & 0 \\ 0 & cI \end{bmatrix}, a = T, b = 2\alpha \text{ and } c = (T + 2\alpha)^{-1}.$$

Numerical results: 1D wave equation

Test data

In our numerical test, we set $T=1, r=100, \alpha=10^{-6}$ and N=1000. We use Euler and SDIRK to approximate \mathcal{R}_ℓ and the function expm in MATLAB to get \mathcal{P}_ℓ and \mathcal{Q}_ℓ . GMRES tol=1e-8.

Efficiency of the preconditioner in GMRES

Unpreconditioned system ${\mathcal M}$

	cond	# iters	Res
Euler	3.8e4	84	8.74e-9
SDIRK	3.8e4	84	8.74e-9

Preconditioned system $\mathcal{M}\widehat{\mathcal{M}}^{-1}$

	cond	# iters	Res
Euler	2.59	4	1.58e-9
SDIRK	2.59	4	1.58e-9

Number of iterations of the preconditioned system remains bounded as $r \longrightarrow \infty$

r	# iters \mathcal{M}	# iters $\mathcal{M}\widehat{\mathcal{M}}^{-1}$
10	10	5
150	76	3
350	104	3

Number of iterations of the preconditioned system for various $\boldsymbol{\alpha}$

α	# iters \mathcal{M}	# iters $\widehat{\mathcal{M}}\widehat{\mathcal{M}}^{-1}$
1e-3	20	3
1e-1	9	3
1e1	4	2

Conclusion and Ongoing works

Conclusion

- We introduced a new time parallel algorithm for time dependent linear quadratic optimal control problem when a cheap exponential integrator is available,
- We proposed two preconditioners for 1D heat equation and 1D wave equation.

Ongoing works

- lacktriangle We are currently studying the behavior of the preconditioners when $\mathcal M$ is obtained from an explicit method respecting CFL condition,
- We are also working on more general convergence properties of the algorithm, its error analysis, and on understanding its performance compared to existing parallel-in-time algorithms.

References

M. Gander, S. Güttel

Paraexp: A parallel integrator for linear initial-value problems. *SIAM*, 2013.

M. Gander, F. Kwok, J. Salomon

ParaOpt: A Parareal algorithm for optimality systems. *SIAM*, 2020.

Colin S.C. Tsang,

Preconditioners for linear parabolic optimal control problems. Master's thesis, $Hong\ Kong,\ China,\ 2017.$