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Introduction: Linear quadratic control problem

We consider the linear quadratic optimal control problem given by

: 1 T
ming ()= 5 IT) = vall + 5 [ IO et
0

subject to y(t) = Ly(t) +v(t), y(0)=yn, te€(0,T]

y [0, T] — R" the state function,

v: [0, T] — R" the control,

Yin and yig the initial and final states,

= £ € R comes from a semi-discretization in space.



Introduction: Linear quadratic control problem

= Using an adjoint variable ), the Lagrange operator becomes

”
Ly, N) = T() - / (9(8) — Ly(8) — v()T - A(2)a.
0
= Taking V£ = 0, we get the optimality system

() — Ly(t) = v(t) {A(t) FLTA() =0
y(O) = Yin,
av(t) = —\(t).

Reduced optimality system

Y6 = Ly(t) = AW, M) =—LTA), (Opt-Syst)
with y(0) = yin and AM(T) = y(T) — Yig-



ParaExp Algorithm [ M. Gander and S. Giittel, 2013]

= For a given initial value problem: y(t) = Ly(t) + f(t), y(0) = yo,

= We consider L sub-intervals of [0, T] given by (T,_1, T;) £=1,.

o~ e o ____ A
To Ty T Teq1

Sub-problems

Inhomogeneous sub-problems on y: For £ =1,...,L,

te (0,T],
.., L Ty,=¢AT, AT=T/L.

we(t) = Lwe(t) + (), we(Te—1) =0, t€ (Te—1, Tel,

Homogeneous sub-problems: i (t) = Lui(t), ui(To) =y, t € (To, Ty] and for £=2,... L.

up(t) = Lup(t), ue(Tp—1) =wp_1(Te—1), t€

Superposition principle: For t € [T, 1, T4], £=1,...,L,

4
y(t) = we(t) + Y uy(e).

j=1

(Te—1, T1]



Parallel in Time Algorithm: ParaExp idea.

s Let Vomy(Te), 6=1,...,L, A~ XNTo), £=1,...,L—1.

Sub-problems

Homogeneous sub-problems on \: For /=1,... L —1,
Me(t) = —=LTAe(t), Me(T) =AM, te [Tio1, To), (H»)
Inhomogeneous sub-problems on y: For / =1,... L,
n(t) = Lw(t) = =2e(t), we(Te1) =0, te (Tes, Tl (IH,)
Homogeneous sub-problems on y: for £ =2,..., L.

in(t) = Lu(t), ui(To) =y, t€ (To, TL],
Ue(t) = Lue(t), we(Te—1) = we—1(Te-1), t € (Te—1, Ti], (Hy)



Parallel in Time Algorithm: Solution propagators

Optimal trajectory

Solution operators

= Qy: exponential propagator that solves (H,) such that

= Ry

= Py

Ae(t) = Qu(t) AL, t€[Te—1,TL), £=1,...,L—1,
solution operator that solves (/H,) such that
() — —ém(t) A, te[Tes, T, £=1,...L,
exponential propagator that solves (H,) such that u(t) = Pi(t) - yin, t € [To, T1], and

1
ue(t) = —&Pg(t) “Re-1(Te—1) A, t€[Teq, Ti], £=2,...,L



Parallel in Time Algorithm: Discrete optimality system

Optimality system

= Discrete optimal trajectory:

£
1 1
Ye=Po(Te) yn = ~Re(Te) A= = > PiTe) - Ry-a(Tjma) - A, £=1,..., L

=2

= Final condition : A — Y. + y = 0.

Linear system on A,
We substitute Y, into the final condition and obtain :
M- AL = b,

L
1 1
where M =1+ “Ru(Ti) + = > P Ria(Tim1), b= yig = Pi(TL) - ¥in

j=2



Parallel in Time Algorithm: Parallel distribution

Parallel computation of M - A,

L
1 1
M-Ae= N —RU(TL) A+~ ZP,-(TL) - Ry—1(Tj—1) - AL

j=2

Yin — u1 771(TL)-y,-r,, /\LH)\L—)WLZ ’R,L(TL)-/\L7
AN — e — we —uppr 0 Peya(TL) - Re(Te) - A, £=1,...,L—1



Preconditioner: 1D heat equation

= We consider 1D heat equation y = Ay + v on [0, 1] x (0, T] with y(x,0) = yin(x) and Dirichlet
boundary condition.A semi-discretization using second-order centered finite difference gives

y(t) = Ly(t) +v(t), y(0)=yn, te(0,T]
= From the continuous form of M given by | + iﬁfl (e2TE — l) we obtain:
Preconditioner
_ =il
M’1:£<£fgl) .
a

Each application of M only requires a multiplication by £ and the solving of an elliptic problem of
the form (£ — 5~ )v = f, which can be done cheaply using algebraic multigrid.

Theorem
Let N be given and R, be approximated using implicit Euler with N fine sub-intervals over each
[Te—1, Te]. Then any eigenvalue i of MM ™ satisfies

1<u<1+%, ot =T/LN.
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Numerical results: 1D heat equation

Test data

In our numerical test, we set T = 1,r = 100, @ = 10~*. SDIRK is the Runge-Kutta method of stages
(1/2++/(3)/6,1/2 — \/(3)/6) and weights (1/2,1/2). We set N = 1000. We use Euler and SDIRK
to approximate R, and the function expm in MATLAB to get P, and Q,. GMRES tol=1le — 8.

Efficiency of the preconditioner in GMRES
Number of iterations of the preconditioned system

Unpreconditioned system M
remains bounded as r — occ.

Omax 7 iters Res
Euler 4.9e2 500 1.3e-8
SDIRK  4.9e2 500 4.08e-7 , # Iters(Euler) # Iters(SDIRK)
L=10> L=3x10% | L=10® L=3x10°
100 9 6 3 2
. —~ 200 10 7 3 3
Preconditioned system MM 250 11 7 3 3
Omax  FF iters Res 600 11 7 3 3
Euler 1.78 9 7.7¢-9

SDIRK 1.0 2 9.64e-9 ”




Preconditioner: 1D wave equation

= We now consider 1D wave equation given by dxv = Av + v, on [0,1] x (0, T], with
v(x,0) = w(x),0:v(x,0) = 0,x € [0,1]. A semi-discretization in space with second-order
centered finite-difference leads

v (O 0
v=Ly+Bv, y {&v} , L |:Ah O} and B L}

= The continuous form of M is given by

T

1 T T My Mo

I+ — exp(sL)BB" exp(sL')ds = ,
! / p(sL)BE” exp(sLT) {Mﬂ "
where for A= —Ay, Moy = M1z, Mo = ;= A7 (I — cos(2TAY?))

T 1 1  _3p. 12 T 1 1o 12
=+ A - = =1+ =)+ — AY2).
Mi = [+ 2= A" = = A 26in2TAY?), Ma = (14 5-)I+ ;=A"/*sin(2TA"?)

Preconditioner

=il
M L1=1— [(al+ol)A) OI] ,a=T,b=2a and c= (T +2a) "
c
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Numerical results: 1D wave equation

Test data

In our numerical test, we set T =1, r = 100, = 10~% and N = 1000. We use Euler and SDIRK to
approximate R, and the function expm in MATLAB to get P, and Q,. GMRES tol=1e — 8.

Efficiency of the preconditioner in GMRES

Unpreconditioned system M

cond # iters Res
Euler 3.8e4 84 8.74e-9
SDIRK  3.8e4 84 8.74e-9

Preconditioned system MM

cond # iters Res
Euler 2.59 4 1.58e-9
SDIRK 2.59 4 1.58e-9

Number of iterations of the preconditioned
system remains bounded as r —

r # iters M # iters MM 1

10 10 5
150 76 3
350 104 3

Number of iterations of the preconditioned
system for various «

e # iters M # iters MM !

le-3 20 3
le-1 9 3
lel 4 2 13




Conclusion and Ongoing works

Conclusion

= We introduced a new time parallel algorithm for time dependent linear quadratic optimal control
problem when a cheap exponential integrator is available,

= We proposed two preconditioners for 1D heat equation and 1D wave equation.

Ongoing works
= We are currently studying the behavior of the preconditioners when M is obtained from an
explicit method respecting CFL condition,

= We are also working on more general convergence properties of the algorithm, its error analysis,
and on understanding its performance compared to existing parallel-in-time algorithms.
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